- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0001100001000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Kallus, Nathan (3)
-
Sun, Wen (3)
-
Wang, Kaiwen (3)
-
Wu, Runzhe (3)
-
Zhou, Kevin (3)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
While distributional reinforcement learning (DistRL) has been empirically effective, the question of when and why it is better than vanilla, non-distributional RL has remained unanswered. This paper explains the benefits of DistRL through the lens of small-loss bounds, which are instance-dependent bounds that scale with optimal achievable cost. Particularly, our bounds converge much faster than those from non-distributional approaches if the optimal cost is small. As warmup, we propose a distributional contextual bandit (DistCB) algorithm, which we show enjoys small-loss regret bounds and empirically outperforms the state-of-the-art on three real-world tasks. In online RL, we propose a DistRL algorithm that constructs confidence sets using maximum likelihood estimation. We prove that our algorithm enjoys novel small-loss PAC bounds in low-rank MDPs. As part of our analysis, we introduce the l1 distributional eluder dimension which may be of independent interest. Then, in offline RL, we show that pessimistic DistRL enjoys small-loss PAC bounds that are novel to the offline setting and are more robust to bad single-policy coverage.more » « less
-
Wang, Kaiwen; Zhou, Kevin; Wu, Runzhe; Kallus, Nathan; Sun, Wen (, 37th Conference on Neural Information Processing Systems (NeurIPS 2023))
-
Wang, Kaiwen; Zhou, Kevin; Wu, Runzhe; Kallus, Nathan; Sun, Wen (, Advances in neural information processing systems)
An official website of the United States government

Full Text Available